

How I learned to stop worrying and love the monolith

Nikola Zivkov
@nikolazivkov
Seavus

Why monolith?

● Well known to developers
● Supported by vendors
● IDE-friendly
● Easy to develop / debug / test / deploy / operate
● Low technical complexity

– In-process communication
– Transactions and consistency

Why microservices?

● Individually deployable / upgradeable / replaceable / scalable
● Availability / design for failure
● Polyglot programming / heterogeneous technology stack

Monolith-first vs. microservices-first

Why monolith-first

● YAGNI – You Aren’t Gonna Need It
● Service boundaries are hard to get at the beginning – refactoring is more expensive
● Microservices require DevOps:

– Continuous delivery
– Rapid provisioning
– Rapid application deployment
– Central logging
– Monitoring
– etc.

Why microservices-first?

It’s hard to cut up a large (BBOM) monolith into microservices

Code entropy

As a system is modified with the inclusion of new functionality, its disorder,
or entropy, tends to increase.

● Monolith: new code added to existing codebase
● Microservices: new code added as new service

Productivity

Bookstore

Monolith - hope

Monolith - reality

The model-code gap

The architecture models include concepts such as component, services,
modules, etc. but the code doesn't reflect this - the implementation often
happens to be a bunch of classes sitting inside a traditional layered
architecture.

vs.

Bookstore monolith

Bookstore monolith restructured

Context map

Deployment as monolith

Deployment as microservices

Monolith to microservices

Monolith to microservices

- Components
- High cohesion
- Low coupling

+ Polyglot programming
+ Heterogeneous technology stack
+ Individually deployable
+ Individually upgradeable
+ Individually replaceable
+ Individually scalable

Microservices architectural prerequisites

● Package structure depicting functional components rather than layers
● Domain model per component (DDD’s bounded context, ubiquitous

language and context map)
● Data store per component
● Domain events to propagate business-meaningful events in asynchronous

manner
● Ports and adapters architecture to isolate components during synchronous

calls

To conclude

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

