How | learned to stop worrying and love the monolith

Nikola Zivkov
@nikolazivkov
Seavus

Why monolith?

Well known to developers

Supported by vendors

IDE-friendly

Easy to develop /debug /test /deploy / operate

Low technical complexity
— In-process communication
— Transactions and consistency

Why microservices?

* |Individually deployable [upgradeable / replaceable /scalable
* Availability / design for failure
 Polyglot programming / heterogeneous technology stack

Monolith-first vs. microservices-first

Monolith

Microservices

————— — — — —

A

Why monolith-first

* YAGNI-You Aren’t Gonna Need It
* Service boundaries are hard to get at the beginning - refactoring is more expensive

* Microservices require DevOps:
— Continuous delivery

You must be
— Rapid provisioning this tall to use
. . . microservices
— Rapid application deployment —
— Central logging
— Monitoring

- etc. A—/

Why microservices-first?

It's hard to cut up a large (BBOM) monolith into microservices

Hope VS. Reality

Code entropy

As a system is modified with the inclusion of new functionality, its disorder,
or entropy, tends to increase.

* Monolith: new code added to existing codebase
e Microservices: new code added as new service

Productivity

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

Bookstore

Monolit

h-hope

e

L ———

y y b :

{ Service A } [Service B } [Service C } i
__ ;
__ E;BFEa‘iHTaQEFi
h 4 v v I

{ Domain A } [Domain B } [Domain C } i
__ |
A N . Data Access Layer]
. . A l

[Data Access A } { Data Access B } { Data Access C } i

|

|

Monolith - reality

e

i —————

Domain Layer]
|

h

Dom

|
|
ain C } i
|
|

Data Access Laye r‘:

|
|
|
Data Access C } }
|
|
|

The model-code gap

The architecture models include concepts such as component, services,
modules, etc. but the code doesn't reflect this - the implementation often

happens to be a bunch of classes sitting inside a traditional layered
architecture.

o]

¢ com
e company
o CE e re— project

e VS. dataaccess

- R ————— 1 domain

? | ¢ presentation
S | QT <1

S service

S

Bookstore monolith

e e e e e e e e e e e e e e e e e e e e

Service Layer

Domain Layer\

Bookstore monolith restructured

AP| Gateway |
|
|

{ BookRestController } { RatingRestController } [Recommendation RestControllerJ :

|

___ :;,_(-::’_—::_::___________________________JI
| BookCatalog] g%:?:‘;_ _____ Rating} { |1 Recommendation |
W *-’JT ~ : ~ :

BookSeni I RatingService / I RecommendationService /]

OOKSEIVICE } ProductService } ProductService }

I I I

| | |

| | |

| | |

| | |

4 } A 4 } h 4 }

Book / ! I |

{ Genre } | Product | Product |

I I I

| | |

| | |

| | |

| | |

h 4 : A : b :

| | |

{ BookRepository } : { ProductRepository } : [ProductRepository J :

| | |

| | |

- — - - - i ______________] = i ______________] = i ______________]

Context map

Book Catalog

Book

-

.

-

Recommendation

Deployment as monolith

App{ication

" TAPI Gateway |

BookRestController ’ ‘ RatingRestController ’ RecommendationRestController

api.RatingService

api.BookService / api.RecommendationService /
api.Book api.Product

RestClient RestClient RestClient

! !

Book Catalog | Rating | Recommendation |
: I — . : .
InProcess InProcess InProcess
Adapter RestAdapter Adapter RestAdapter Adapter RestAdapter
api.BookService / I] api.RecommendationService /
api.Book ! PR RgSEReE api.Product !
BookService | RatingService / ! RecommendationService / |

ProductService ProductService

Book /
o ! Product I Product !
r 's b ~ b ~
BookRepository] ProductRepository } ProductRepository]
I | I
I ~ -~ | < I
I | I
v h 4

-~
walal
Ok
aalal
-~
walal

2

Deployment as microservices

,&PI Gate\A;ay Service

BookRestController

v

api.BookService /

RatingRestController ’

api.RatingService

RecommendationRestController

v

api.RecommendationService / ‘

API G_ateway

J

api.Book api.Product
RestClient RestClient RestClient
- - - - - - - - - - - - -/
- "~ Bodk C:atalog 1 - - | Ratinigi} o - Recomn emdaEiE)m
L . Ul
InProcess InProcess InProcess
Adapter [RestAdapter Adapter [RestAdapter Adapter [RestAdapter

api.BookService /
api.Book

{

BookService

1

Book /
Genre

BookRepository

v
w o
|

|
N

Book Catalog Service |

api.RatingService

1

RatingService /
ProductService

1

api.RecommendationService /
api.Product

1

RecommendationService /
ProductService

L

~

Product I Product
s A A a
ProductRepository } ProductRepository
|
L 1 J
|
- R i o - L -
o Rating Servicej . Recpﬂmendgtion Service
h 4 A4
- -
w o w o
I | (|
¥) L]

Monolith to microservices

Monolith

Microservices

————— — — — —

Monolith to microservices

Structured
Monolith Monolith Microservices

L ——
>
- Components + Polyglot programming
- High cohesion + Heterogeneous technology stack
- Low coupling + Individually deployable

+ Individually upgradeable
+ Individually replaceable
+ Individually scalable

Microservices architectural prerequisites

Package structure depicting functional components rather than layers

Domain model per component (DDD’s bounded context, ubiquitous
language and context map)

Data store per component

Domain events to propagate business-meaningful events in asynchronous
manner

Ports and adapters architecture to isolate components during synchronous
calls

To conclude

_ Simon Brown
- simonbrown

I'll keep saying this ... if people can't build
monoliths properly, microservices won't help.
gconlondon #DesignThinking #Modularity

us 100 wABREEEsEL

10:49 AM - 4 Mar 2015

a%a

/ Monolithic
j&

Microservices

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

