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Why monolith?

Well known to developers

Supported by vendors

IDE-friendly

Easy to develop /debug /test /deploy / operate

Low technical complexity
— In-process communication
— Transactions and consistency



Why microservices?

* |Individually deployable [ upgradeable / replaceable /scalable
* Availability / design for failure
 Polyglot programming / heterogeneous technology stack



Monolith-first vs. microservices-first
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Why monolith-first

* YAGNI-You Aren’t Gonna Need It
* Service boundaries are hard to get at the beginning - refactoring is more expensive

* Microservices require DevOps:
— Continuous delivery

You must be
— Rapid provisioning this tall to use
. . . microservices
— Rapid application deployment —
— Central logging
— Monitoring

- etc. A—/



Why microservices-first?

It's hard to cut up a large (BBOM) monolith into microservices

Hope VS. Reality



Code entropy

As a system is modified with the inclusion of new functionality, its disorder,
or entropy, tends to increase.

* Monolith: new code added to existing codebase
e Microservices: new code added as new service



Productivity

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity



Bookstore



Monolit

h-hope

e

L ———

y y b :

{ Service A } [ Service B } [ Service C } i
____________________________________________________________________ ;
__________________________________________________________ E;BFEa‘iHTaQEFi
h 4 v v I

{ Domain A } [ Domain B } [ Domain C } i
____________________________________________________________________ |
A N . Data Access Layer]
. . A l

[ Data Access A } { Data Access B } { Data Access C } i

|

|



Monolith - reality
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The model-code gap

The architecture models include concepts such as component, services,
modules, etc. but the code doesn't reflect this - the implementation often

happens to be a bunch of classes sitting inside a traditional layered
architecture.
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Bookstore monolith restructured
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Deployment as monolith
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Deployment as microservices
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Monolith to microservices
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Monolith to microservices

Structured
Monolith Monolith Microservices

L ——
>
- Components + Polyglot programming
- High cohesion + Heterogeneous technology stack
- Low coupling + Individually deployable

+ Individually upgradeable
+ Individually replaceable
+ Individually scalable



Microservices architectural prerequisites

Package structure depicting functional components rather than layers

Domain model per component (DDD’s bounded context, ubiquitous
language and context map)

Data store per component

Domain events to propagate business-meaningful events in asynchronous
manner

Ports and adapters architecture to isolate components during synchronous
calls



To conclude



_ Simon Brown
- simonbrown

I'll keep saying this ... if people can't build
monoliths properly, microservices won't help.
gconlondon #DesignThinking #Modularity
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Thank You
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