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Easy Packaging

Consistent Dependencies

Repeatable Deployments

Easy Automation



Continuous Delivery
Logging Scaling

Monitoring

Automatic Recovery
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Google Container Engine

Redhat Openstack
Cloudfoundry

Cloud Provider

Microsoft Azure
Amazon EC2 Container Service

heroku






THE TWELVE-FACTOR APP

INTRODUCTION

In the modern era, software is commonly delivered as a service: called web apps, or software-as-a-service. The twelve-factor
app is a methodology for building software-as-a-service apps that:

http://12factor.net



|. Codebase

One codebase tracked in revision
control, many deploys

Il. Dependencies

Explicitly declare and isolate
dependencies

lll. Config
Store config in the environment

IV. Backing Services

Treat backing services as attached
resources

V. Build, release, run

Strictly separate build and run
stages

VI. Processes

Execute the app as one or more
stateless processes



http://12factor.net/codebase
http://12factor.net/dependencies
http://12factor.net/config
http://12factor.net/backing-services
http://12factor.net/build-release-run
http://12factor.net/processes

VIl. Port binding
Export services via port binding

VIll. Concurrency
Scale out via the process model

IX. Disposability

Maximize robustness with fast
startup and graceful shutdown

X. Dev/prod parity

Keep development, staging, and
production as similar as possible

Xl. Logs

Treat logs as event streams

XIl. Admin processes

Run admin/management tasks as
one-off processes


http://12factor.net/port-binding
http://12factor.net/concurrency
http://12factor.net/disposability
http://12factor.net/dev-prod-parity
http://12factor.net/logs
http://12factor.net/admin-processes







Databases

*VVery own requirements:
e State-full
* Low CPU but high 1/0
* Distributed data
e (usually) complex to scale
* (usually) not built for “hot swap”

* = not 12 Factor applications



Databases

 Don’t dockerize databases

* Keep them external to the system
* DBA will teveyou not hate you
* Easier to maintain
* Very own cluster mechanisms
* Easier routing in Datacenters
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