


Docker from Dev to Prod

for JavaSkop 2015




Chris

@cimnine

5 o s 3
3 E’LE il % ; 1—1"““4-. 4 :f 2

PR

Disclaimer: The opinions expressed are fhose of the speaker.and: do
not reflect opinions of any other person, company or agéncy

LSRN

i



Chris

@cimnine

e - — B =

Disclaimer: The opinions expressed are those of the speaker an-d'rd_o
not reflect opinions of any other person, company or agency.

LD




Chris

@cimnine

5 o s 3
3 E’LE il % ; 1—1"““4-. 4 :f 2

PR

Disclaimer: The opinions expressed are fhose of the speaker.and: do
not reflect opinions of any other person, company or agéncy

LSRN

i






Dev
~— 7

Pre

VCS

orange lines are data flow and blue lines are control flow



orange lines are data flow and blue lines are control flow



Pre

orange lines are data flow and blue lines are control flow



orange lines are data flow and blue lines are control flow



OPS PROBLEM NOW



orange lines are data flow and blue lines are control flow





















‘Eﬂ"'*

"'..-:f =% _memegenerator.nget










Dev
~— 7

VCS

orange lines are data flow and blue lines are control flow



Dev

VCS

and blue lines are control flow



Dev
post-commit
|

VCS

and blue lines are control flow












Dev
~— 7

VCS

orange lines are data flow and blue lines are control flow



Dev
~— 7

VCS Repository

orange lines are data flow and blue lines are control flow



Dev
~— 7

VCS Doc.ker
Registry

orange lines are data flow and blue lines are control flow



Dev
docker
push

VCS ‘ Docker

Registry

and blue lines are control flow



ssh +

| ~
g

Registry

and blue lines are control flow



Dev
~— 7

VCS Doc.ker
Registry

orange lines are data flow and blue lines are control flow



DeV thmg Helper

Docker
Registry

VCS

and blue lines are control flow



ssh +
docker run

DeV Helper

Docker
Registry

VCS

and blue lines are control flow









Dev
~— 7

Helper

VCS

Docker
Registry

Pre

orange lines are data flow and blue lines are control flow



@

ev

Ops

Helper

Pre

Docker

orange lines are data flow and blue lines are control flow



@

v

Docker

orange lines are data flow and blue lines are control flow



Dev
~—_ 7

VCS

DOCKER CONTAI
orange lines are data flow and blue Imes are control flow




Easy Packaging

Consistent Dependencies

Repeatable Deployments

Easy Automation



Continuous Delivery
Logging Scaling

Monitoring

Automatic Recovery



@

v

Docker

orange lines are data flow and blue lines are control flow



Dev
~— 7

Helper

VCS

Docker
Registry

Pre

orange lines are data flow and blue lines are control flow



6 eC\D/ Helper
~—_ —

VCS Doc.ker
Registry

orange lines are data flow and blue lines are control flow



O
6ev Scheduler
~_

WENTE)

VCS : Doc.ker
Registry

orange lines are data flow and blue lines are control flow



O
6ev Scheduler
~__ __—

WEN])

VCS : Doc.ker
Registry

orange lines are data flow and blue lines are control flow



Worker Host
w/ Agent

Worker Host
w/ Agent

W ENE]

Worker Host
w/ Agent

Cluster
State

Worker Host
w/ Agent

Worker Host
w/ Agent



Cluster
State

W ENE]

Worker Host
ami’ Agent

Worker Host Worker Host
W/ AgE Sl iy Agent

Worker Host Worker Host
w/ Agent w/ Agent




Cluster
State

W ENE]

Worker Host Worker Host Worker Host Worker Host Worker Host
W/ Agegte ey Agent wilAgent w/ Agent w/ Agent

commands desired state vs. reports actual state



Cluster
State

Worker Host Worker Host Worker Host Worker Host Worker Host
W/ Agegte ey Agent wilAgent w/ Agent w/ Agent

commands desired state vs. reports actual state



Cluster
State

-’Mt

Worker Host Worker Host Worker Host Worker Host Worker Host
W/ ASE i iy’ Agent amiy/ Agent w/ Agent w/ Agent

commands desired state vs. reports actual state



Cluster
State

-’Mt

Worker Host Worker Host Worker Host Worker Host Worker Host
W/ ASE i iy’ Agent amii Agent w/ Agent w/ Agent

commands desired state vs. reports actual state



Cluster

State

Worker

Worker Worker

commands desired state vs. reports actual state



Orchestration



Which container runs on which host?

Orchestration



How does the traffic come there?
Which container runs on which host?

Orchestration



How does the traffic come there?
Which container runs on which host?

Orchestration

How do the services talk with each other?



How does the traffic come there?
Which container runs on which host?

Orchestration

How do the services talk with each other?

How to do updates w/o service interruption?



How does the traffic come there?
Which container runs on which host?

Orchestration

How do the services talk with each other?

How to do updates w/o service interruption?
How to scale out?



How does the traffic come there?
Which container runs on which host?

Where do the logs go?

Orchestration

How do the services talk with each other?

How to do updates w/o service interruption?
How to scale out?



How does the traffic come there?
Which container runs on which host?

Where do the logs go?

Orchestration

How do the services talk with each other?

How to do updates w/o service interruption?
How to scale out?



Spotify Helios
Docker Swarm

Kubernetes

Orchestration

Rancher
Newrelic Centurion

Apache Mesos with Marathon



Spotify Helios
Docker Swarm

Kubernetes

Orchestration

Rancher
Newrelic Centurion

Apache Mesos with Marathon



Google Container Engine

Redhat Openstack
Cloudfoundry

Cloud Provider

Microsoft Azure
Amazon EC2 Container Service

heroku






THE TWELVE-FACTOR APP

INTRODUCTION

In the modern era, software is commonly delivered as a service: called web apps, or software-as-a-service. The twelve-factor
app is a methodology for building software-as-a-service apps that:

http://12factor.net



|. Codebase

One codebase tracked in revision
control, many deploys

Il. Dependencies

Explicitly declare and isolate
dependencies

lll. Config
Store config in the environment

IV. Backing Services

Treat backing services as attached
resources

V. Build, release, run

Strictly separate build and run
stages

VI. Processes

Execute the app as one or more
stateless processes



http://12factor.net/codebase
http://12factor.net/dependencies
http://12factor.net/config
http://12factor.net/backing-services
http://12factor.net/build-release-run
http://12factor.net/processes

VIl. Port binding
Export services via port binding

VIll. Concurrency
Scale out via the process model

IX. Disposability

Maximize robustness with fast
startup and graceful shutdown

X. Dev/prod parity

Keep development, staging, and
production as similar as possible

Xl. Logs

Treat logs as event streams

XIl. Admin processes

Run admin/management tasks as
one-off processes


http://12factor.net/port-binding
http://12factor.net/concurrency
http://12factor.net/disposability
http://12factor.net/dev-prod-parity
http://12factor.net/logs
http://12factor.net/admin-processes







Databases

*VVery own requirements:
e State-full
* Low CPU but high 1/0
* Distributed data
e (usually) complex to scale
* (usually) not built for “hot swap”

* = not 12 Factor applications



Databases

 Don’t dockerize databases

* Keep them external to the system
* DBA will teveyou not hate you
* Easier to maintain
* Very own cluster mechanisms
* Easier routing in Datacenters



SAY DOCKER

~

"
ONEMORETIME




