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Who am I

• Software Engineer working in the field of Data 
Science

• 3 years of experience in working on data platforms, 
and applications that take advantage of machine 
learning techniques



What I’ll talk about

• What is a Recommender System (Engine)
• Brief history
• Why do we need one
• How do we build one
• How do we know we’ve build a good one
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What is a Recommender System (Engine) ?

• A piece of software whose job is to:
• Analyze data and discover patterns
• Build models that describe user behavior
• Use these models to improve and enrich the user experience
• Create a personalized environment for the user, on the system
• Adjust that model by analyzing the user-system interactions and by

“learning”, by means of incorporating user feedback





Why do we need Recommender Systems?

• In the eyes of the service provider
Þ Helps in deciding what kind of offerings should be made to the user
Þ Helps in guiding user attention
Þ Helps in presenting the user with the desired customization

• In the eyes of the user
Þ Helps in finding a particular item
Þ Helps in comparing / choosing among a large number of items



Personalized / Non-Personalized

• Is this item important / attractive in general?
- Top N overall, Trending now, Association rules

• Is this item important / attractive for this user?
- Because you liked that, you might like this

- Because your friend liked that, you might like this

- Because this is similar to something you liked



Deep Learning 
Models based on 
different Neural 
Networks 
architectures



Most common approaches

• Statistical methods

• Collaborative filtering techniques
• Item – Item based
• User – User based
• Hybrid combination

• Matrix Factorization techniques (SVD, Deep Learning)



Credits: 
http://www.salemmarafi.com/wp-content/uploads/2014/04/collaborativeFiltering-960x540.jpg



Credits: 
https://image.slidesharecdn.com/4772391/95/building-a-recommendation-engine-an-example-of-a-product-recommendation-engine-21-728.jpg



How do we build one?

Data

• Users
• Events
• Actions

Features

• Feature 
Engineering

• Entity 
relationships

ML alg.

• Choose wisely 
for the use-
cases

Predictions

• Generate 
predictions
(ranking…)

Validate

• Test the system 
in the wild

• Incorporate 
user feedback





First, we get the data!

In order to recommend an item to a user or a group of users, you need to have:
• an offering of items, and

• users to which to recommend those items

Step 1:

Aggregate, structure and analyze the data that the system holds. Some 
visualizations might point to particular trends, and the size and volume of data 
might give clue to what algorithm is most appropriate.



Define the features

• Decide on:
• What is known for the user entity?
• What is known for the item entity?
• What actions does the system track, that might offer useful information?
• What is known for the relationship between the entities?

Step 2:

Define the features of the entities and the features of the relationship between 
the users, items and actions in the system. Make the features as descriptive as 
possible. Sometimes a mixture of attributes can be a feature also.



Choose an Algorithm

• Research, experiment and decide:
• Whether the recommender system will be personalized / non personalized

• Whether it will use collaborative filtering, or factorization techniques

• Which machine algorithm will be leveraged (supervised / unsupervised learning) ?

Step 3:

Build on the shoulders of giants. See what has been used before, to solve a 
similar problem. Research and experiment with different algorithms, and 
techniques.



Build models and generate predictions

• Use the features / algorithm decision and implement a model

• Use the data to train the model

• Use the model to generate predictions

• Check the performance of the model

Step 4:

Build and train a model. Build more than one model. Compare the predictions 
and evaluate the models.



Test / Validate the models

• Use the built models, to show predictions (recommendations) to real users

• Monitor the response / actions of the users
• Make sure to provide as much options as possible for the users to provide feedback

Step 5:

Test the built models with real users. Start off with something small like 
a “what you might like” section. Incorporate user feedback in order to 
improve model performance.
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The cold start problem…
• What if there is no sufficient data for users / items in the system?

Þ Start with general recommendations, non-personalized, the same for every user.

Þ Link the user account with some social network, and ask for data

Þ Provide quick and easy ways for users to let you know more about them



Offer ways for the user to give feedback
• Like / dislike

• Rate

• Swipe to remove / hide (don’t show me items like this)

• Was this helpful?

• Track implicit feedback, as well as explicit…

=> If the user was presented with 5 recommendations, and the user choose the third 
one, maybe the first two deserve a bad mark...



Gotchas…
• Uneven rankings from different people (one mans’ 3 can mean the same as other mans’ 

5, on a 1-5 scale)

• Temporal data (what is relevant today, may not be as relevant tomorrow)

• What scale best captures your items nature 0-1 (like, no like), 1-5, 1-10, 0-100?

• Are user ratings reliable? Would the same user rate the same item with the same grade 
today, as it did 1 week/month/year ago?
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Gotchas…
• Uneven rankings from different people (one mans’ 3 can mean the same as other mans’ 

5, on a 1-5 scale)

=> Normalize by subtracting the average rating from that users’ ratings
• Temporal data (what is relevant today, may not be as relevant tomorrow)

=> Order the recommendations by date, then take from the top
• What scale best captures your items nature 0-1 (like, no like), 1-5, 1-10, 0-100?

=> Very item specific, experiment with the most common few, settle on one
• Are user ratings reliable? Would the same user rate the same item with the same grade 

today, as it did 1 week/month/year ago?

=> Implement a weight cost function which puts accent on newest actions



It’s the little things…
• “We recommend” vs “what you might like”

• This product has a 4.3 star rating. Out of HOW MANY ratings?

• We recommend this item… Why?


