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‘Use these models to improve and enrich the user experience
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Sake . Use these model's to 1mpr0ve anqbenrlch the user experience

+ Create a personalized env1r0nment for the user, on the system



What 1s a Recommender System (Engine) ?

* A piece of software whose job is to:
* Analyze data and discover patterns
* Build models that describe user behavior
* Use these models to improve and enrich the user experience
* Create a personalized environment for the user, on the system

* Adjust that model by analyzing the user-system interactions and by
“learning”, by means of incorporating user feedback
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he desired customization
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. In the eyes of the user
- = Helps in finding a particular item

— Helps in comparing / choosing among a large number of items
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Because you liked that, you might hke thls /
- Because your friend liked that, you m1ght like this A< ; \

- Because thisis similar to something you liked



Recommender Approaches
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* Matrix Factorization techniques (SVD, Deep Learning)



User-based filtering Item-based filtering

Credits: .
http://www.salemmarafi.com/wp-content/uploads/2014/04 /collaborativ eFiltering-960x540. jpg



Singular Value Decomposition
(SVD)

A=UxSxV’
A s U S VT

m X n matrix == m X r matrix r X r matrix r Xx n matrix

= -
g s rank = k
w n k<r
users users

users

A =UxS xV

o Low rank approx. Item profile is [J L .‘fS

k

sSwajn

o Low rank approx. User profile is 4§, * Ve

o Low rank approx. Item-User matrix is U/ * ,‘fS* * 1"9& ¥ VkT

Credits:
https://image.slidesharecdn.com/4772391/95/build ing-a-recommendation-eng ine-an- example-of-a-product-recommendation-engine-21-728.jpg
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Validate

Predictions

Data Features | ML alg.

» Users * Feature * Choose wisely * (Generate e Test the system
* Events Engineering for the use- predictions in the wild
e Actions * Entity cases (ranking...) * Incorporate

relationships user feedback
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Aggregate, structure and analyze the data that the system holds. Some
visualizations might point to particular trends, and the size and volume of data
might give clue to what algorithm is most appropriate.
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‘What ! tem track, t 1ght offer useful information?
r What is known for the relat10nsh1p betw%en the entities?

Step 2:

Define the features of the entities and the features of the relationship between
the users, items and actions in the system. Make the features as descriptive as

Nssible. Sometimes a mixture of attributes can be a feature also.

\"‘! \



i .111 use > C . r actorlzatlontechnlques

thh machlne algcmth 1W - ed.e(supeersed/ unsuperv1sed learning) ?
L '-m'

»‘S't_ep 3
Build on the shoulders of giants. See what has been used before, to solve a

similar problem. Research and experiment with different algorithms, and
techniques.
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Step 4: | \ &
Build and train a model. Build more than one model. Compare the predictions
and evaluate the models.
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“pqésible for the users to provide feedback
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Step 5:
Test the built models with real users. Start off with something small like
a “what you might like” section. Incorporate user feedback in order to

@prove model performance.

AT



relevant elements

selected elements

true negatives

How many selected
items are relevant?

Precision =

How many relevant
items are selected?

Recall = —

precision - recall

Fl =<2

precision + recall
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- = Start with general recommendations, non-personalized, the same for every user.

/



= Start with general recommendations, non-personalized, the same for every user.

— Link the user account with some social network, and ask for data



= Start with general recommendations, non-personalized, the same for every user.

= Link the user account with some social network, and ask for data ( ))

= Provide quick and easy ways for users to let you know more about them



* Track implicit feedback, as well as explicit...

=> [f the user was presented with 5 recommendations, and the user choose the third

//ﬁie, maybe the first two deserve a bad mark...

!
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: What scale best capturés your i,t_’emshne 0-1 (like, no like), 1-5, 1-10, 0-100?

e Are user ratings reliable? Would the same user rate the same item with the same grade

today, as it did 1 week/month/year ago?

.
.
______
............
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* Are user ratings reliable? Would the same user rate the same item with the same grade
today, as it did 1 week/month/year ago?



| '. A"flf What scale best captures your 1tems nature 0-1 (hke no like), 1-5, 1-10, 0-100?

* Are user ratings reliable? Would the same user rate the same item with the same grade
today, as it did 1 week/month/year ago?
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> Order the recommendations by date, then take from the top T
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e _What scale best captures your items nature 0-1 (like, no like), 1-5, 1-10, 0-1007
=> Very item specific, experiment with the most common few, settle on one

* Are user ratings reliable? Would the same user rate the same item with the same grade
today, as it did 1 week/month/year ago?
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1y not be as relevant tomorrow)

= Order the recommenda ot sby_“ | ! ' en‘ take from the top Y
 ° What soale best captures your items nature 0-1 (like, no like), 1-5, 1-10, 0-100?
=> Very item specific, experiment with the most common few, settle on one

* Are user ratings reliable? Would the same user rate the same item with the same grade
today, as it did 1 week/month/year ago?

/ﬁ> Implement a weight cost function which puts accent on newest actions

C‘ \
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