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What I was taught functional programming is:
(defun add-two-lists (a b c &optional (d c))
  (if a
    (add-two-lists
     (cdr a) (cdr b)
     (cdr (rplaca c (+ (car a) (car b)))) d) d))

(add-two-lists '(1 2 3 4 5) '(1 2 3 4 5) '(nil nil nil nil nil))

11/03/2017
2



Why functional programming?
class SomeClass {
 private boolean magicFlag;

 public boolean isMagicFlag() {
   return magicFlag;
 }
 
 public void updateSomething() { this.magicFlag = true;}
 
 public int doSomething() {
   return magicFlag ? 1 : 0;
 }
}
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Why functional programming?
class SomeClass {
 private boolean magicFlag;

 public boolean isMagicFlag() {
   return magicFlag;
 }
 
 public void updateSomething() { this.magicFlag = true;}
 
 public int doSomething() {
   return magicFlag ? 1 : 0;
 }
}

What will doSomething() return?
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Why functional programming?
● What kind of input am I getting? 
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Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?

● How do I synchronize my code?

11/03/2017
10



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?
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Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?

● How do I synchronize my code?
○ Is the input thread safe?
○ How can I be sure no race conditions occur?
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Side-effects
● It’s fairly easy to write code in Java with side-effects

○ changing objects or variables in place
○ printing to the console
○ writing to a log file or to a database
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○ changing objects or variables in place
○ printing to the console
○ writing to a log file or to a database

● Not all side-effects are harmful
● Side-effects are considered harmful if they affect the semantics of our 

program in an undesirable way.
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Side-effects
● It’s fairly easy to write code in Java with side-effects

○ changing objects or variables in place
○ printing to the console
○ writing to a log file or to a database

● Not all side-effects are harmful
● Side-effects are considered harmful if they affect the semantics of our 

program in an undesirable way.

● If a function throws an exception => side-effect that affects our program
○ Exceptions are like non-local goto-statements
○ They break normal control-flow
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Side-effects
● Real-world applications do perform side-effects.

int divide(int dividend, int divisor) {
 return dividend / divisor;
}
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Side-effects
● Real-world applications do perform side-effects

int divide(int dividend, int divisor) {
 return dividend / divisor;
}

● Lets’ modify it a bit

Try<Integer> divide(int dividend, int divisor) {
 return Try.of(() -> dividend / divisor);
}
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Side-effects
● Real-world applications do perform side-effects

int divide(int dividend, int divisor) {
 return dividend / divisor;
}

● Lets’ modify it a bit

Try<Integer> divide(int dividend, int divisor) {
 return Try.of(() -> dividend / divisor);
}

● This version of divide does not throw any exception anymore. 
● We made the possible failure explicit by using the type Try.
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Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 
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Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 
● Given the same input the output is always the same.

Math.random(); Math.max(1, 2);
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Math.random(); Math.max(1, 2);

● A function is called pure if all expressions involved are referentially 
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Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 
● Given the same input the output is always the same.

Math.random(); Math.max(1, 2);

● A function is called pure if all expressions involved are referentially 
transparent. 

● An application composed of pure functions will most probably just work if it 
compiles. 

● We are able to reason about it. Unit tests are easy to write and debugging 
becomes a relict of the past.
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Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.
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Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized
● Are stable regarding equals and hashCode
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Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized
● Are stable regarding equals and hashCode

○ are reliable hash keys
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Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized
● Are stable regarding equals and hashCode

○ are reliable hash keys
● Do not need to be cloned
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Why we need Javaslang
● Java 8 brought a lot of changes, but 

11/03/2017
29



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures

11/03/2017
30



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting

11/03/2017
31



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples

11/03/2017
32



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs

11/03/2017
33



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas

11/03/2017
34



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas
○ Failure handling (Try, Either)

11/03/2017
35



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas
○ Failure handling (Try, Either)
○ list.stream().map(...).collect(toList())

11/03/2017
36



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas
○ Failure handling (Try, Either)
○ list.stream().map(...).collect(toList())
○ ...

● Javaslang was created by Daniel Dietrich and first released in 2013. It 
leverages Java 8’s lambdas to create various new features based on 
functional patterns
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Does Java have immutable collections?
List<String> underlying = new ArrayList<>();
underlying.add("1","2");
List<String> list = Collections.unmodifiableList(underlying);
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Does Java have immutable collections?
List<String> underlying = new ArrayList<>();
underlying.add("1","2");
List<String> list = Collections.unmodifiableList(underlying);

underlying.add("3");
assert list.size() != underlying.size(); // What will happen?
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Functional Data Structures
javaslang.collection.List<User> users = List.of(
   new User("1", "1@mail"),
   new User("2", "2@mail"));

// users is immutable
users.push(new User("3", "3@email"));
assert users.size() == 2; // It will pass
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Functional Data Structures
javaslang.collection.List<User> users = List.of(
   new User("1", "1@mail"),
   new User("2", "2@mail"));

// users is immutable
users.push(new User("3", "3@email"));
assert users.size() == 2; // It will pass

users = users.push(new User("3", "3@email"));

users
   .map(User::getEmail)
   .toSet()
   .forEach(emailService::sendWelcomeEmailTo);
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Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());
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Partial application
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Function2<String, User, String> emailTxt = 
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Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

String emailTemplate = "Hello _user_";

// (user) => "Hello " + user.getUserName()
Function<User, String> contentForUser = emailTxt.apply(emailTemplate);

users.filter(x -> Objects.nonNull(x.getName()))
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Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

String emailTemplate = "Hello _user_";

// (user) => "Hello " + user.getUserName()
Function<User, String> contentForUser = emailTxt.apply(emailTemplate);

users.filter(x -> Objects.nonNull(x.getName()))
   .forEach(user -> emailService.sendEmail(
       user.getEmail(),
       contentForUser.apply(user)));
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Tuples

● Easily create tuples of length 1 to 8
○ Tuple.of(1, “two”, Option.empty())
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Tuples

● Easily create tuples of length 1 to 8
○ Tuple.of(1, “two”, Option.empty())

List<Status> statuses = users.map(user ->
emailService.sendEmail(

       user.getEmail(),
       contentForUser.apply(user.getName())));
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Tuples

● Easily create tuples of length 1 to 8
○ Tuple.of(1, “two”, Option.empty())

List<Status> statuses = users.map(user ->
emailService.sendEmail(

       user.getEmail(),
       contentForUser.apply(user.getName())));

List<Tuple2<User, Status>> mailStatusForUser = users.zip(statuses);
// Status = OK | NOT_OK
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Checked Functions
● Lambdas in Java8 can’t throw checked exceptions

// Compiler error
Supplier<InputStream> inSupplier = socket::getInputStream;
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// Compiler error
Supplier<InputStream> inSupplier = socket::getInputStream;

● Javaslang provides checked functions
CheckedFunction0<BufferedReader> readerSupplier =
   CheckedFunction0.of(socket::getInputStream)
       .andThen(InputStreamReader::new)
       .andThen(BufferedReader::new);
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Checked Functions
● Lambdas in Java8 can’t throw checked exceptions

// Compiler error
Supplier<InputStream> inSupplier = socket::getInputStream;

● Javaslang provides checked functions
CheckedFunction0<BufferedReader> readerSupplier =
   CheckedFunction0.of(socket::getInputStream)
       .andThen(InputStreamReader::new)
       .andThen(BufferedReader::new);

try {
 readerSupplier.apply();
} catch (Throwable throwable) {
 // do something
}
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Error Handling
● Checked functions can be composed in a clean way
● But there is an even more elegant solution. 
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Error Handling
● Checked functions can be composed in a clean way
● But there is an even more elegant solution. Instead of:

CheckedFunction0<InputStream> inCheckedSuplier =
CheckedFunction0.of(socket::getInputStream);

try {
 inCheckedSuplier.apply();
} catch (Throwable throwable) {
 // do something
}
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Error Handling
● Checked functions can be composed in a clean way
● But there is an even more elegant solution. Instead of:

CheckedFunction0<InputStream> inCheckedSuplier =
CheckedFunction0.of(socket::getInputStream);

try {
 inCheckedSuplier.apply();
} catch (Throwable throwable) {
 // do something
}

● We could just do
Try<BufferedReader> readerTry = Try.of(socket::getInputStream)
   .map(InputStreamReader::new)
   .map(BufferedReader::new);
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How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 
}

11/03/2017
56



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }
}
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How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
}
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How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
 return somePerson == null ?
     ResponseEntity.notFound().build()
}
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How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
 return somePerson == null ?
     ResponseEntity.notFound().build()
     : ResponseEntity.ok(somePerson);
}
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How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
 return somePerson == null ?
     ResponseEntity.notFound().build()
     : ResponseEntity.ok(somePerson);
}

// What if someService.find throws some exception?
// What if validate throws some exception?
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Let’s play with it

@RequestMapping("/find/{name}")
public ResponseEntity<?> find(String name) {
 return validate(name) // returns Either<Throwable, String>
}
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Let’s play with it

@RequestMapping("/find/{name}")
public ResponseEntity<?> find(String name) {
 return validate(name) // returns Either<Throwable, String>
     .flatMap(this.someService::find) // only if validation passed
}

// SomeService.find returns Either a person (correct result)
// or a Throwable on an Error
public Either<Throwable, Person> find(String name)
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Let’s play with it

@RequestMapping("/find/{name}")
public ResponseEntity<?> find(String name) {
 return validate(name) // returns Either<Throwable, String>
     .flatMap(this.someService::find) // only if validation passed
     .fold(this::getResponseOnError, ResponseEntity::ok);

//always returns a response
}
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Some of us have to work with InputStreams
String getContent(String location) throws IOException {
 try {
   final URL url = new URL(location);
   if (!"http".equals(url.getProtocol())) {
     throw new UnsupportedOperationException("Protocol is not http");
   }

   final URLConnection con = url.openConnection();
   final InputStream in = con.getInputStream();
   return readAndClose(in);
 } catch(Exception x) {
   throw new IOException("Error loading location " + location, x);
 }
}
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Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     
}
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Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     
}
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Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     .flatMap(url -> Try.of(url::openConnection))

}
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Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     .flatMap(url -> Try.of(url::openConnection))
     .flatMap(con -> Try.of(con::getInputStream))
    
}
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Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     .flatMap(url -> Try.of(url::openConnection))
     .flatMap(con -> Try.of(con::getInputStream))
     .map(this::readAndClose);
}
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Conclusion

● Right tool for the right job
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● Javaslang offers good functional patterns
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● It offers a lot more than I talked about here
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Conclusion

● Right tool for the right job
● We’re still struggling with proper use of OOP
● Pure functional programming is hard
● Javaslang offers us good functional patterns
● And we can combine them with our Java code

○ When we need them, if we need them
● It offers a lot more than I talked about here
● So please check it out

○ http://www.javaslang.io/
○ https://github.com/javaslang/javaslang
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Thank you!
Questions?
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SORSIX International is an established Australian IT company with offices in Australia, USA, 
Macedonia and Serbia. We build mission-critical systems for finance, telecommunications and 
healthcare. Our systems keep planes flying, banks working, and phones connected. Ten million 
people live and prosper on our healthcare platform, spanning three countries. Sorsix believes in 
building systems that never go down because lives and businesses depend on them. 

About Sorsix

All Sorsix trademarks and logos are owned by Sorsix. All other brand or product names are trademarks or 
registered marks of their respective owners. Because we are continually improving our products and 
services, Sorsix reserves the right to change specifications without prior notice. 
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