
11/03/2017 1

Javaslang
Achieve functional eloquence in Java

Blagoj Atanasovski | dev@Sorsix



What I was taught functional programming is:
(defun add-two-lists (a b c &optional (d c))
  (if a
    (add-two-lists
     (cdr a) (cdr b)
     (cdr (rplaca c (+ (car a) (car b)))) d) d))

(add-two-lists '(1 2 3 4 5) '(1 2 3 4 5) '(nil nil nil nil nil))

11/03/2017
2



Why functional programming?
class SomeClass {
 private boolean magicFlag;

 public boolean isMagicFlag() {
   return magicFlag;
 }
 
 public void updateSomething() { this.magicFlag = true;}
 
 public int doSomething() {
   return magicFlag ? 1 : 0;
 }
}

11/03/2017
3



Why functional programming?
class SomeClass {
 private boolean magicFlag;

 public boolean isMagicFlag() {
   return magicFlag;
 }
 
 public void updateSomething() { this.magicFlag = true;}
 
 public int doSomething() {
   return magicFlag ? 1 : 0;
 }
}

What will doSomething() return?

11/03/2017
4



Why functional programming?
● What kind of input am I getting? 

11/03/2017
5



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?

11/03/2017
6



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?

11/03/2017
7



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?

11/03/2017
8



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?

11/03/2017
9



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?

● How do I synchronize my code?

11/03/2017
10



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?

● How do I synchronize my code?
○ Is the input thread safe?

11/03/2017
11



Why functional programming?
● What kind of input am I getting? 

○ Is it mutable?
○ Will someone outside of my code modify it?
○ Can I mutate it?
○ Am I mutating it without knowing?

● How do I synchronize my code?
○ Is the input thread safe?
○ How can I be sure no race conditions occur?

11/03/2017
12



Side-effects
● It’s fairly easy to write code in Java with side-effects

○ changing objects or variables in place
○ printing to the console
○ writing to a log file or to a database

11/03/2017
13



Side-effects
● It’s fairly easy to write code in Java with side-effects

○ changing objects or variables in place
○ printing to the console
○ writing to a log file or to a database

● Not all side-effects are harmful
● Side-effects are considered harmful if they affect the semantics of our 

program in an undesirable way.

11/03/2017
14



Side-effects
● It’s fairly easy to write code in Java with side-effects

○ changing objects or variables in place
○ printing to the console
○ writing to a log file or to a database

● Not all side-effects are harmful
● Side-effects are considered harmful if they affect the semantics of our 

program in an undesirable way.

● If a function throws an exception => side-effect that affects our program
○ Exceptions are like non-local goto-statements
○ They break normal control-flow

11/03/2017
15



Side-effects
● Real-world applications do perform side-effects.

int divide(int dividend, int divisor) {
 return dividend / divisor;
}

11/03/2017
16



Side-effects
● Real-world applications do perform side-effects

int divide(int dividend, int divisor) {
 return dividend / divisor;
}

● Lets’ modify it a bit

Try<Integer> divide(int dividend, int divisor) {
 return Try.of(() -> dividend / divisor);
}

11/03/2017
17



Side-effects
● Real-world applications do perform side-effects

int divide(int dividend, int divisor) {
 return dividend / divisor;
}

● Lets’ modify it a bit

Try<Integer> divide(int dividend, int divisor) {
 return Try.of(() -> dividend / divisor);
}

● This version of divide does not throw any exception anymore. 
● We made the possible failure explicit by using the type Try.

11/03/2017
18



Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 

11/03/2017
19



Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 
● Given the same input the output is always the same.

Math.random(); Math.max(1, 2);

11/03/2017
20



Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 
● Given the same input the output is always the same.

Math.random(); Math.max(1, 2);

● A function is called pure if all expressions involved are referentially 
transparent. 

11/03/2017
21



Referential Transparency
● A function/expression, is called referentially transparent if a call can be 

replaced by its value without affecting the behavior of the program. 
● Given the same input the output is always the same.

Math.random(); Math.max(1, 2);

● A function is called pure if all expressions involved are referentially 
transparent. 

● An application composed of pure functions will most probably just work if it 
compiles. 

● We are able to reason about it. Unit tests are easy to write and debugging 
becomes a relict of the past.

11/03/2017
22



Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

11/03/2017
23



Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

11/03/2017
24



Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized

11/03/2017
25



Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized
● Are stable regarding equals and hashCode

11/03/2017
26



Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized
● Are stable regarding equals and hashCode

○ are reliable hash keys

11/03/2017
27



Immutable Values
The key to better Java code is to use immutable values paired with referentially 
transparent functions.

Immutable values are:
● Inherently thread-safe

○ do not need to be synchronized
● Are stable regarding equals and hashCode

○ are reliable hash keys
● Do not need to be cloned

11/03/2017
28



Why we need Javaslang
● Java 8 brought a lot of changes, but 

11/03/2017
29



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures

11/03/2017
30



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting

11/03/2017
31



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples

11/03/2017
32



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs

11/03/2017
33



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas

11/03/2017
34



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas
○ Failure handling (Try, Either)

11/03/2017
35



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas
○ Failure handling (Try, Either)
○ list.stream().map(...).collect(toList())

11/03/2017
36



Why we need Javaslang
● Java 8 brought a lot of changes, but 

○ No functional data structures
○ No currying, partial application, memoization, lifting
○ No Tuples
○ Lack of Stream/Optional in existing APIs
○ No checked exceptions in lambdas
○ Failure handling (Try, Either)
○ list.stream().map(...).collect(toList())
○ ...

● Javaslang was created by Daniel Dietrich and first released in 2013. It 
leverages Java 8’s lambdas to create various new features based on 
functional patterns

11/03/2017
37



Does Java have immutable collections?
List<String> underlying = new ArrayList<>();
underlying.add("1","2");
List<String> list = Collections.unmodifiableList(underlying);

11/03/2017
38



Does Java have immutable collections?
List<String> underlying = new ArrayList<>();
underlying.add("1","2");
List<String> list = Collections.unmodifiableList(underlying);

underlying.add("3");
assert list.size() != underlying.size(); // What will happen?

11/03/2017
39



Functional Data Structures
javaslang.collection.List<User> users = List.of(
   new User("1", "1@mail"),
   new User("2", "2@mail"));

// users is immutable
users.push(new User("3", "3@email"));
assert users.size() == 2; // It will pass

11/03/2017
40



Functional Data Structures
javaslang.collection.List<User> users = List.of(
   new User("1", "1@mail"),
   new User("2", "2@mail"));

// users is immutable
users.push(new User("3", "3@email"));
assert users.size() == 2; // It will pass

users = users.push(new User("3", "3@email"));

users
   .map(User::getEmail)
   .toSet()
   .forEach(emailService::sendWelcomeEmailTo);

11/03/2017
41



Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

11/03/2017
42



Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

String emailTemplate = "Hello _user_";

11/03/2017
43



Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

String emailTemplate = "Hello _user_";

// (user) => "Hello " + user.getUserName()
Function<User, String> contentForUser = emailTxt.apply(emailTemplate);

11/03/2017
44



Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

String emailTemplate = "Hello _user_";

// (user) => "Hello " + user.getUserName()
Function<User, String> contentForUser = emailTxt.apply(emailTemplate);

users.filter(x -> Objects.nonNull(x.getName()))
   

11/03/2017
45



Partial application

// (template, user) => Contents
Function2<String, User, String> emailTxt = 

(template,user) -> template.replace("_user_", user.getName());

String emailTemplate = "Hello _user_";

// (user) => "Hello " + user.getUserName()
Function<User, String> contentForUser = emailTxt.apply(emailTemplate);

users.filter(x -> Objects.nonNull(x.getName()))
   .forEach(user -> emailService.sendEmail(
       user.getEmail(),
       contentForUser.apply(user)));

11/03/2017
46



Tuples

● Easily create tuples of length 1 to 8
○ Tuple.of(1, “two”, Option.empty())

11/03/2017
47



Tuples

● Easily create tuples of length 1 to 8
○ Tuple.of(1, “two”, Option.empty())

List<Status> statuses = users.map(user ->
emailService.sendEmail(

       user.getEmail(),
       contentForUser.apply(user.getName())));

11/03/2017
48



Tuples

● Easily create tuples of length 1 to 8
○ Tuple.of(1, “two”, Option.empty())

List<Status> statuses = users.map(user ->
emailService.sendEmail(

       user.getEmail(),
       contentForUser.apply(user.getName())));

List<Tuple2<User, Status>> mailStatusForUser = users.zip(statuses);
// Status = OK | NOT_OK

11/03/2017
49



Checked Functions
● Lambdas in Java8 can’t throw checked exceptions

// Compiler error
Supplier<InputStream> inSupplier = socket::getInputStream;

11/03/2017
50



Checked Functions
● Lambdas in Java8 can’t throw checked exceptions

// Compiler error
Supplier<InputStream> inSupplier = socket::getInputStream;

● Javaslang provides checked functions
CheckedFunction0<BufferedReader> readerSupplier =
   CheckedFunction0.of(socket::getInputStream)
       .andThen(InputStreamReader::new)
       .andThen(BufferedReader::new);

11/03/2017
51



Checked Functions
● Lambdas in Java8 can’t throw checked exceptions

// Compiler error
Supplier<InputStream> inSupplier = socket::getInputStream;

● Javaslang provides checked functions
CheckedFunction0<BufferedReader> readerSupplier =
   CheckedFunction0.of(socket::getInputStream)
       .andThen(InputStreamReader::new)
       .andThen(BufferedReader::new);

try {
 readerSupplier.apply();
} catch (Throwable throwable) {
 // do something
}

11/03/2017
52



Error Handling
● Checked functions can be composed in a clean way
● But there is an even more elegant solution. 

11/03/2017
53



Error Handling
● Checked functions can be composed in a clean way
● But there is an even more elegant solution. Instead of:

CheckedFunction0<InputStream> inCheckedSuplier =
CheckedFunction0.of(socket::getInputStream);

try {
 inCheckedSuplier.apply();
} catch (Throwable throwable) {
 // do something
}

11/03/2017
54



Error Handling
● Checked functions can be composed in a clean way
● But there is an even more elegant solution. Instead of:

CheckedFunction0<InputStream> inCheckedSuplier =
CheckedFunction0.of(socket::getInputStream);

try {
 inCheckedSuplier.apply();
} catch (Throwable throwable) {
 // do something
}

● We could just do
Try<BufferedReader> readerTry = Try.of(socket::getInputStream)
   .map(InputStreamReader::new)
   .map(BufferedReader::new);

11/03/2017
55



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 
}

11/03/2017
56



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }
}

11/03/2017
57



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
}

11/03/2017
58



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
 return somePerson == null ?
     ResponseEntity.notFound().build()
}

11/03/2017
59



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
 return somePerson == null ?
     ResponseEntity.notFound().build()
     : ResponseEntity.ok(somePerson);
}

11/03/2017
60



How we usually do it
@RequestMapping("/person/{name}")
public ResponseEntity<?> find(String name) {
 if (!validate(name)) {
   return ResponseEntity.badRequest().body("request not valid");
 }

 Person somePerson = this.someService.find(name);
 return somePerson == null ?
     ResponseEntity.notFound().build()
     : ResponseEntity.ok(somePerson);
}

// What if someService.find throws some exception?
// What if validate throws some exception?

11/03/2017
61



Let’s play with it

@RequestMapping("/find/{name}")
public ResponseEntity<?> find(String name) {
 return validate(name) // returns Either<Throwable, String>
}

11/03/2017
62



Let’s play with it

@RequestMapping("/find/{name}")
public ResponseEntity<?> find(String name) {
 return validate(name) // returns Either<Throwable, String>
     .flatMap(this.someService::find) // only if validation passed
}

// SomeService.find returns Either a person (correct result)
// or a Throwable on an Error
public Either<Throwable, Person> find(String name)

11/03/2017
63



Let’s play with it

@RequestMapping("/find/{name}")
public ResponseEntity<?> find(String name) {
 return validate(name) // returns Either<Throwable, String>
     .flatMap(this.someService::find) // only if validation passed
     .fold(this::getResponseOnError, ResponseEntity::ok);

//always returns a response
}

11/03/2017
64



Some of us have to work with InputStreams
String getContent(String location) throws IOException {
 try {
   final URL url = new URL(location);
   if (!"http".equals(url.getProtocol())) {
     throw new UnsupportedOperationException("Protocol is not http");
   }

   final URLConnection con = url.openConnection();
   final InputStream in = con.getInputStream();
   return readAndClose(in);
 } catch(Exception x) {
   throw new IOException("Error loading location " + location, x);
 }
}

11/03/2017
65



Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     
}

11/03/2017
66



Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     
}

11/03/2017
67



Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     .flatMap(url -> Try.of(url::openConnection))

}

11/03/2017
68



Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     .flatMap(url -> Try.of(url::openConnection))
     .flatMap(con -> Try.of(con::getInputStream))
    
}

11/03/2017
69



Let’s fix it
Try<String> getContentT(String location) {
 return Try
     .of(() -> new URL(location))
     .filter(url -> "http".equals(url.getProtocol()))
     .flatMap(url -> Try.of(url::openConnection))
     .flatMap(con -> Try.of(con::getInputStream))
     .map(this::readAndClose);
}

11/03/2017
70



Conclusion

● Right tool for the right job

11/03/2017
71



Conclusion

● Right tool for the right job
● We’re still struggling with proper use of OOP

11/03/2017
72



Conclusion

● Right tool for the right job
● We’re still struggling with proper use of OOP
● Pure functional programming is hard

11/03/2017
73



Conclusion

● Right tool for the right job
● We’re still struggling with proper use of OOP
● Pure functional programming is hard
● Javaslang offers good functional patterns
● And we can combine them with our Java code

○ When we need them, if we need them

11/03/2017
74



Conclusion

● Right tool for the right job
● We’re still struggling with proper use of OOP
● Pure functional programming is hard
● Javaslang offers good functional patterns
● And we can combine them with our Java code

○ When we need them, if we need them
● It offers a lot more than I talked about here

11/03/2017
75



Conclusion

● Right tool for the right job
● We’re still struggling with proper use of OOP
● Pure functional programming is hard
● Javaslang offers us good functional patterns
● And we can combine them with our Java code

○ When we need them, if we need them
● It offers a lot more than I talked about here
● So please check it out

○ http://www.javaslang.io/
○ https://github.com/javaslang/javaslang

11/03/2017
76

http://www.javaslang.io/
http://www.javaslang.io/


Thank you!
Questions?

21/02/2017 77



11/03/2017 78

SORSIX International is an established Australian IT company with offices in Australia, USA, 
Macedonia and Serbia. We build mission-critical systems for finance, telecommunications and 
healthcare. Our systems keep planes flying, banks working, and phones connected. Ten million 
people live and prosper on our healthcare platform, spanning three countries. Sorsix believes in 
building systems that never go down because lives and businesses depend on them. 

About Sorsix

All Sorsix trademarks and logos are owned by Sorsix. All other brand or product names are trademarks or 
registered marks of their respective owners. Because we are continually improving our products and 
services, Sorsix reserves the right to change specifications without prior notice. 

©2016 Sorsix Ltd.  All rights reserved. 


